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Abstract—The development of a bioinspired image sensor,
which can match the functionality of the vertebrate retina, has
provided new opportunities for vision systems and processing
through the realization of new architectures. Research in both
retinal cellular systems and nanodriven memristive technology
has made a challenging arena more accessible to emulate features
of the retina that are closer to biological systems. This paper
synthesizes the signal flow path of photocurrent throughout a
retina in a scalable 180-nm CMOS technology, which initiates
at a 128 x 128 active pixel image sensor, and converges to a
16 x 16 array, where each node emits a spike train synonymous
to the function of the retinal ganglionic output cell. This signal
can be sent to the visual cortex for image interpretation as part
of an artificial vision system. Layers of memristive networks are
used to emulate the functions of horizontal and amacrine cells
in the retina, which average and converge signals. The resulting
image matches biologically verified results within an error margin
of 6% and exhibits the following features of the retina: lateral
inhibition, asynchronous adaptation, and a low-dynamic-range
integration active pixel sensor to perceive a high-dynamic-range
scene.

Index Terms— Artificial retina,
vision, sensor systems, silicon retina.

memristor, neuromorphic

I. INTRODUCTION

ERFORMANCE and efficiency requirements of bio-
processes and bioprocessing have set a challenging
standard for researchers and engineers due to their
seemingly insurmountable and extremely demanding
specifications [1]-[4]. Neuromorphic computing is a powerful
illustration of this paradigm, the foundation of which was
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formulated in [7], whereby large-scale adaptive analog
systems were conjectured to be highly robust and power
efficient. If neuronal activity and cellular connectivity can
be experimentally verified and accurately modeled, then
the hardware mapping of various biological systems can
realistically be made possible. The focus of this paper is the
vision system, where at present, restoration of sight to patients
deprived of functional vision by degenerative receptors is thus
far dependent upon the electrical stimulation of the surviving
retinal cells [8]. This method lacks a correlation between
the stimulus and the cellular processes within the retina,
which results in only very limited vision being restored.
The development of a successful prosthesis hinges upon
improved predictive models based on the natural flow of
signals in the retinal network.

A prerequisite for hardware mapping of retinal-based vision
systems is the need to understand the structure of the retina
in terms of the cellular connections and photocurrent process-
ing. The retina has five layers: photoreceptor cells (outer
boundary), horizontal cells, bipolar cells, amacrine cells, and
ganglion cells (inner boundary). The bioarchitecture is shown
in Fig. 1. When light enters the eye, it encounters two types
of photoreceptors: the rod cells (approximately 120 million
in number) and cone cells (approximately 6 million), which
convert light into nerve signals. The relativity of these numbers
becomes significant when one ventures into hardware map-
ping [91-[15].

As noted, successful development of a retinal model
requires experimental validation of the processes that occur
within the retina. Over the past 50 years, experimental
techniques have matured significantly, providing an adequate
insight into the bioprocessing that takes place within individual
retinal cells. Despite this, the absence of appropriate nanoscale
circuit devices has impeded the development of smart imag-
ing systems based on the retina. With device scaling of
CMOS technology [19], and the recent progress and increased
confidence in the manufacturability of memristors, such a
nanocircuit element has created a new design domain for dense
architectures. The memristor, postulated in 1971 by Chua [20]
and fabricated for the first time by Hewlett-Packard [21], has
paved the way for emulating complex biological functions
and achieving the biomimicry of observed synaptic plasticity
in neuronal systems [22], [23]. The nonlinear and adaptive
response of memristors allows practical realization of complex
synaptic connections [24], [25].
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Retinal bioarchitecture adapted from [16] and [17]. Photoconduction pathway for ionic current flows through photoreceptor cell — horizontal cell

— bipolar cell — amacrine cell — ganglion cell, and then to the visual cortex. Bipolar and amacrine cells transfer electrical signals from photoreceptors to
the ganglion cells. Lateral connections involve both horizontal and amacrine cells and span throughout the OPL and the IPL. Amacrine cells are responsible
for further processing the retinal image. Ganglion cells receive electrical signals from the bipolar and amacrine cells. Ganglion cells process electrical signals
for the optic nerve and spike at a faster rate if there is a change in the overall light intensity for a group of photoreceptors, sending a signal to the visual
cortex via the optical nerve. Roughly 100 photoreceptor outputs are capable of contributing to a single ganglion cell [22]. Amacrine cells are responsible for
70% of the ganglionic layer input [18]. The proposed three-level architectural mapping depicts the functions needed for mapping into hardware, where n is
the scaling factor. The first layer involves photoreceptor and horizontal cells; the second layer includes amacrine and bipolar cells, while ganglion cells form

the third and final layers.

The research motivation arises from the lack of any existing
circuits, which achieve not only an adaptive image output
but also performance at a cellular level in the same manner
as the retina. Present circuits aim to achieve neuromorphic
vision by producing functional images through, for example,
edge detection and averaging methods, at a higher level,
without regard to cellular-level currents and action potentials
occurring within the retinal cells [26]. This paper proposes
an approach that treats each pixel as an output cell, thus
designing a retinal-inspired circuit that captures the signal
flow of photocurrent passing through the cellular layers, with
each subcircuit constrained in size to depict the ratio of
cells that are present in the retina. The signal initiates at a
128 x 128 memristor-CMOS active pixel sensor (APS), which
represents the photoreceptor cells with hexagonal memristive
interconnects that emulate the effects of lateral inhibition and
averaging, often associated with the function of the horizontal
and amacrine cells [18]. The output signals converge to a
64 x 64 memristive network of ON/OFF-bipolar cells, which
respond with a graded potential mediated by interconnecting
amacrine cells. The signal yet again converges to a 16 x 16
network of amplitude-to-frequency converters, which perform
the functionality of the output ganglion cells, with each node
in the array emitting a spike train, which approximates the
signal sent through the optic nerve to the visual cortex for
image interpretation in the brain. Alternatively, this signal
can be quantized by its frequency and has a bit assigned
in order to generate an output image. This ultimately achieves
an asynchronous adaptive response image sensor, which not
only models scalable retinal behavior at a cellular level but also

reduces power consumption as compared to other retinal chips
and microprocessors while maintaining an acceptable error
bound of 6%. Memristors have been shown to be stochastic
in nature, which gives rise to cycle-to-cycle variations within
the same device. As the cellular processes that are dealt with
in this paper (such as graded potentials and spiking) occur on
the order of milliseconds, as a physical device, a neuromorphic
vision circuit that operates at the level of cellular processing
proves to be highly robust to nanosecond variations [27].
The various components of the image processing circuit
each perform a separate function contributing to the overall
artificial retina architecture, as inspired by the various cells
within the retina. As such, this paper will follow a bottom-
up approach in presenting our results, which first focuses on
the individual cellular circuits before presenting them as a
network. Section II provides a basic framework of the retina
from a cellular perspective with a focus on functionality arising
from the underlying ionic current gating theory formulated
by Hodgkin and Huxley (HH) [28]. A brief explanation and
justification of the functions of each cell to be mapped into
hardware are described. For convenience, memristor theory
is highlighted in Section IV to justify the rationale in its
adoption in our architecture with a description of the model
used in this paper. Section V presents the constituent cellular
circuits, which are combined and structured into a larger
network in Section V as a 3-D array, which is able to
process continuous signals, initiating at the photoreceptor,
through to the output ganglion cell. The full network is
simulated in Section VI with appropriate comparisons made
against prevalidated experimental data. Experimental results
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High-level architecture and signal flow of the retina-based image sensor. Each cellular layer is modeled independently. 1: photoreceptor cells with a

memristor-CMOS integration type APS. 2: supplementary matching circuit to perform adaptive imaging. The signal output passes through to 3 a memristor-
based horizontal cell network to average and smooth the signal from various photoreceptors. Note that the signal is not passed through a single memiristor,
but through a horizontal network as described in Section IV-B and in Fig. 6. This averaged signal is passed onto 4 a CMOS ON/OFF bipolar cell network for
further processing, before being averaged once again in 5 a memristor-based amacrine cell network. The output is finally passed onto 6 a CMOS ganglion cell
network. The system comes together to mimic the functionality and image processing capabilities of the retina, and the spike train output from the ganglion
cell can either stimulate the optic nerve for interpretation by the visual cortex, or each frequency value can be assigned a bit to construct an image a computer
can comprehend. The architecture presented represents a single signal flow pathway, in contrast to Fig. 3 which depicts the interconnections between various
signal flow pathways connected by horizontal cells, amacrine cells, and chemical and electrical synapses.
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Fig. 3. Proposed scaled-down architectural platform derived from a retinal
network model in [29], illustrating the foundational building blocks of the 3-
D architecture, this paper proposes for future system-on-chip implementation.
Many of the neurons in the retina, photoreceptors, horizontal, and bipolar
cells communicate through passive gap junctions rather than through spikes.
The cone cell pathway to the ganglion cell layer via the cone-bipolar layer
interacts vertically with chemical synapses and laterally (via horizontal and
amacrine cells) with electrical synapses.

are also provided, which serve to illustrate functionality of
the proposed architecture of the quantized spike train in the
form of a real image output.

II. BIOLOGICAL MODEL

Transformation of the architecture shown in Fig. 1 into the
signal processing model shown in Fig. 2 that could overcome
space-power-speed constraints with current technological

limitations appears impractical. However, a scaled-down ver-
sion is feasible by the way of memristor-CMOS technologies.
To alleviate complexity in the simulation and verification of
bioflow, we have streamlined the photoreceptor cells to focus
on the cone cell pathway. As such, this section serves as a brief
introduction of the retina and is not to be read as a thorough
review. More in depth information can be found in [30]-[32].
Fig. 2 presents the architecture of the signal flow from the
perspective of a single pixel. The development of a full
retina requires interconnections between many signal flows,
but before moving onto that task in Section IV, the function
of each constituent cell is described.

A. Photoreceptor Cells

Rod and cone cells essentially act as transducing elements
by transforming the incident light stimuli into an electrical
photocurrent. The magnitude of the voltage change in the cell
membrane is proportional to the logarithm of the intensity of
light [33]. Rods initiate vision under low scotopic light levels
of illumination (1073 — 107% cd/m?), while cone cells initiate
under high photopic light (10 — 10® cd/m?) [30].

Given there are approximately 20 times as many rod cells
present in the retina as there are cone cells, this suggests we
think of the signals from many of these rod cells as converging
together to improve the signal-to-noise ratio (SNR) under low
light levels rather than for enhanced visual acuity. As such, this
paper will focus on the cone cell signals, even though many
of the features of the circuit are also adaptable to rod cells.
HH biokinetic modeling can be used to describe the system
of ionic currents and gating variables within each cell, but for
the purposes of the development of a VLSI of a network of
photoreceptor cells, we are more interested in the interaction of
photoreceptors between one another as opposed to the intrinsic
cellular processes. The outputs of the photoreceptor cells form
synaptic connections with bipolar cells and horizontal cells.
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B. Horizontal Cells

Horizontal cells form synaptic connections between pho-
toreceptors and bipolar cells. Via the horizontal cells, lateral
connections with neighboring groups of photoreceptors and
bipolar cells are made. These can be conceived as being
a resistive layer spanning the outer plexiform layer (OPL)
of the retina, with the architecture allowing dynamic-range
adjustments. The strength of the electrical potential depends on
the physical proximity with the photoreceptor, where photore-
ceptors hyperpolarize the nearby horizontal cells, and distant
horizontal cells are depolarized due to lateral inhibition [34].

C. Bipolar Cells

Bipolar cells behave as the signal couriers between the
photoreceptors that react to light stimuli and the ganglion
cells that carry these signals out of the retina. Bipolar
cells process visual signals through the integration of ana-
log signals generated by synaptic currents and (nonspike
generating) voltage-gated membrane currents. There are two
functional types of bipolar cells: ON-center and OFF-center
cells. Photoreceptors release only one neurotransmitter, gluta-
mate, yet bipolar cells react to this stimulus with two different
responses, ON-center (glutamate release via photoceptor depo-
larization) and OFF-center (glutamate release via photoreceptor
depolarization). ON-cells respond to the onset of light and
OFF-cells respond to the cessation of light, and these are thus
complementary in nature—an important consideration when
translating this particular feature into a circuit.

D. Amacrine Cells

Amacrine cells exist in the inner plexiform layer (IPL) and
give transient light responses to signals from both ON- and
OFF-bipolar cells. They can be classified into sustained and
transient cells: sustained amacrine cells obtain their inputs
from the bipolar cells that are not inhibited by other amacrine
cells. The response of sustained amacrine cells then inhibits
bipolar terminals in the narrow field region, causing those
terminals to respond transiently. Essentially, this network of
amacrine cells forms a high-pass filter of the bipolar signal
that enables the detection of moving edges [35].

E. Ganglion Cells

Ganglion cells send the output of the retinal signal to
the optical nerve, and by extension, to the visual cortex.
They convert graded potential inputs from bipolar cells into
action potentials—a sequence of spikes transmitted to be
interpreted by the brain. The frequency of firing is related to
the magnitude of the stimulation [36] and provides a measure
of the difference in intensity between the center and surround
region of its receptive field. Increasing the intensity in the
center region increases the firing rate of ON-center ganglion
cells, while an increase of the OFF-center cells signals a rapid
decrease in light intensity on the center of the receptive field.

The adaptation of such cells and neural processes into cir-
cuits requires significant advancement in the field of synthetic
biology, and the advent of the memristor proposes a new

2819

method of being able to inch closer toward meeting the golden
standard of design specifications.

II1. IDEAL MEMRISTOR MODEL

The memristor is a fundamental circuit element due to the
constitutive relationship it holds between charge and flux.
Note that even though g and ¢ are referred to as charge and
flux, they are not necessarily associated with real physical
charge and flux (as exhibited in classical conductors and
inductors) [37]. Additionally, the integral relationship between
voltage and flux allows a memristor to retain history and
potentially have different values of current for a given voltage.
As a result, the memristor allows for different values of
resistance despite being excited by identical voltages, due to
it being a function of historical voltage. This gives rise to
the nomenclature surrounding the memristor, a portmanteau
of “memory resistor.” The intrinsic nonlinearities and polarity
dependence of the individual memristor give rise to many more
configuration permutations than the same number of other
fundamental circuit elements, namely, the resistor, capacitor,
and inductor. The behavior of memristors connected serially,
in parallel and via coupling, is theoretically and experimentally
evaluated in [38] and [39], and by taking advantage of their
composite connections, it is anticipated that networks with a
density of 100 billion synapses/cm? in each layer should soon
be possible by shrinking memristors down to 30 nm across.
This implies that highly dense 3-D structures with a very
large number of memristors within very close proximity of
one another can be made possible—precisely the requirements
of neural modeling.

Ideal memristors can be classified into either charge con-
trolled or flux controlled [20]. The relationship between cur-
rent and voltage of a charge-controlled memristor is expressed
by

V(1) = M(q)i(2) 1)

where ¢ is the time, V(¢) is the voltage, ¢ is the charge,
and M(q) is the memristance. In its derivative form, mem-
ristance can be defined as

d
M(q) = % @)

where ¢ is the flux—the time integral of voltage o(z).
Contrastingly, the current of a flux-controlled memristor is

i(t) = W(g)o(r) 3)

where W(¢) denotes flux-controlled memductance and can be
derived from (2) as

dq(¢)

d¢p
Flux ¢ and charge ¢ are two intrinsic state variables affecting
memductance, which is a characteristic embedded into the
memristor at the time of fabrication. The memristive array
in Sections IV-VI. utilizes a memristor with a linear piecewise
charge-flux curve, resulting in a flux-controlled switching
memristor, as presented in [37]. This implies that there are
two possible memristance states, Mon and Mopp, which

W(g) = “)



2820

Match Line

Reset 1
_“:4| mz = mL

M5
Light . RSO|;V M3 Pour = —
Y e
Nl [ ma
| f - E
= Read pulse

Fig. 4. Photoreceptor cone cell circuit: photodiode current can be stored
within memristor MR1, and adaptive vision is emulated by matching current
light input to the prior state of stored light. This mechanism is embedded
through transistors M4 and ML, whereby the potential at the gate of M4 is
only altered [and thus, the internal state x of MRI as represented by (5)] if
the match line differs by a value greater than the transistor threshold from
the present input. That is to say, power is only dissipated in the circuit when
there is a change of light input, thus emulating adaptive functionality of the
photoreceptor cell. The output of the circuit is PoyT, denoting photoreceptor
cell output.

correspond to the memristor exhibiting a high state or a
low state, respectively. In theoretical circuit analysis, this can
sometimes be approximated to an open circuit and a short
circuit, thus being referred to as a “memristive switch.” This
paper utilizes an ideal switching memristor in the horizontal
and amacrine cell circuitry, and a generic memristor in the
photoreceptor cell circuitry. The characterization of the generic
memristor is provided in Section IV.

IV. RETINAL CELL CIRCUIT MODELS AND SIMULATIONS

The constituent circuits for each component of the retinal
cellular pathway are presented in this section to validate the
building blocks of the architecture, before being scaled into a
full network simulation in Section V.

Here, each cell is simulated independently of one another
to verify their functionality. The CMOS technology is pro-
duced using the 180-nm process devised by SK Hynix, with
information regarding scalability in Section V.

A. Photoreceptor Cell Circuitry

The proposed circuit for a single photoreceptor cone cell at
the front-end interface of the retina is shown in Fig. 4, with
accompanying simulations in Fig. 5 showing voltage response
at output Poyt and internal memristor state x as a function
of input photocurrent.

Upon the incidence of light, the output Poyr displays
a graded potential which is stored by the memristor
MRI according to the state equation

Morr — MINITIAL
X = (5)
Morr — Mon
where MniTIAL 1S the initial memristance of MR1 and x is
its intrinsic state variable. This represents a generic memristor,
the internal characteristics of which are dependent upon the
ratio between the difference between initial resistance and the

ON-state resistance, with the OFF-resistance value. The initial
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Fig. 5. Photoreceptor cone cell simulation: voltage response at output PoyT
and the internal state of MR1, x, upon injecting photocurrents of various
values representing various light intensities. The biological cone cell response
to a photocurrent injection is biphasic—this is not shown in the single cell
simulation [30]. Instead, biphasic behavior is emulated once the full network
of cone cells is combined with appropriately biased memristors. The storage
ability of the cell model is shown to saturate beyond photocurrents of 600
pA, which is well above the value verified by experimental data [40] allowing
this model to capture the full range of photocurrents which can be translated
into meaningful images at the visual cortex.

memristance is dependent upon photocurrent which controls
M?2 of Fig. 4, and changes the node voltage of Poyt. The time-
dependent variation of x, dx/dt, is identical to dVpy,/dt,
which is MntTIaL X (di/dt), otherwise known as current-
induced charge ¢ incident upon the photodiode. Thus, dx /dt
corresponds to the photocurrent on the photodiode, and x
is varied by photocurrent and the integration time based on
the amount of charge g. The bordered segment of the circuit
in Fig. 4 represents a detection unit, whereby the match line
allows for the detection of the current from a previous point
in time. The signal is only passed where a change in current
is detected. This is used to mimic adaptive perception in the
retina. At steady-state illumination, the output will only react
to changes in light illumination, thus replicating retinalike
behaviors.

B. Horizontal Cell Circuitry

It has been shown in [26] that memristive networks per-
form better than resistive grids for edge preservation smooth-
ing. Additionally, using switching memristors characterized
by (3) and (4) in Fig. 6 results in behavior that significantly
mimics neuronal action potentials when injected with a short
rectangular pulse of photocurrent into the input nodes. The net-
work of memristors performs not only functional averaging,
but additionally mimics depolarization and hyperpolarization.
This is illustrated in the simulation shown in Fig. 7. Upon
the injection of six photocurrent responses, their currents
are averaged through the memristor network. The state of
a charge-controlled switching memristor is dependent on
the time integral of current flowing through it as implied
by (1) and (2). Once the charge exceeds a certain threshold
(as determined by the device itself), the internal state of all
adjacent memristors will switch ON (approximated to an open
circuit in circuit analysis) and allows the full output of Pout
from the photoreceptor circuit to momentarily pass through.
The final phase or segment “5” on the curve represents
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Fig. 6. Horizontal cell circuitry: the equivalent representation of the
horizontal cell network which allows for lateral communication between
photoreceptor cells via memristors. Each node along the perimeter of the
hexagon (depicted as a circle) provides inputs from the photoreceptor outputs
PouTi—6 of Fig. 4 (otherwise can be referred to as the horizontal cell inputs
HiN1—6)- The central node Hoyrt (horizontal cell output) emits a signal of
six averaged photoreceptor responses to the next cell circuitry for processing.
An alternative 3-D representation can be found in Fig. 12. The memristor
used in this model is the switching memristor characterized by (4) and (6).
The memristors have been oriented with alternating polarities, and assuming
all memristors in the system are initialized at the origin of their odd-symmetric
flux-charge curves, this will result in closer emulation of cell behavior by
likening the voltage response (see current output for voltage-controlled ideal
memristors) to the action potential curve of cells. More specifically, with
respect to Fig. 7, the slope between positions “1” and “2” becomes steeper
and more consistent by alternating the polarities of memristors within each
branch.

Memristive Averaging
(Horizontal Cell System)
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° ©)
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Fig. 7. Horizontal cell simulation: voltage output at Poyr of Fig. 4 when

behaving in a network as in Fig. 6, and is subject to a pulse of photocurrent
injection. The photocurrent is injected into a single cone cell circuit, while
neighboring cone cells (connected via memristors) are left without stimulation.
The linear relationship between voltage and resistance means the action
potential is scalable. As such, the voltage axes have remained unlabeled—
the important note is that the voltage at “2” is 1/6 of the value at “4” due
to the adjacent memristors simultaneously switching ON, which mitigates the
spread of photocurrent throughout the network. The branches with the least
total resistance will see greater charge flow, and thus, central-node memristors
will switch states faster than branches with greater resistance. Depending on
the value of photocurrent injection, branches with total resistances about a
given amount will fail to switch, which corresponds to point “4.” Without
further photocurrent input, the circuit hyperpolarizes and goes back to its
resting state. Thus, the voltage potential strongly resembles the shape of an
action potential of a neuron when triggered, which has been overlaid on the
simulation result for comparison.

the refractory period of the neuron: the phase in which it
recovers before producing another action potential. This is for
the simplest case of all memristors initially being switched
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OFF and there is a short photocurrent pulse injection at the
photoreceptor layer for any nonedge pixel.

From a circuit’s perspective, in a circuit where the hexag-
onal circuit is connected in a network with a large number
of other hexagonal circuit, the branches with the least total
resistance (i.e., a lower number of memristors) will have
memristors that switch states faster than those with greater
resistance (i.e., a greater number of memristors). As a com-
paratively greater current (and, therefore, total charge) flows
through the pathway with least resistance, this results in the
memristor that directly connects each input node to output
node switching before any other memristor in the network
(as denoted by the sudden flattening of the curve at point
“2”). Following that, memristors in branch pathways with
increasing total branch resistance are sequentially switched.
Higher order branches with resistances above an amount
dependent upon the photocurrent input will fail to switch due
to insufficient charge/current flow—this corresponds to point
“4” where all other memristor branches cease to switch, and
the photocurrent input goes back into the resting state causing
the drop back to “5.” In terms of averaging, the instantaneous
current that passes through the output node when there is only
one input can be calculated to be Iy_out = (1/6)Ip_ouT,
and by superposition, the instantaneous current total at the
output node of each hexagon is approximately the average of
all current inputs for the six input nodes. Caution must be
taken with the superposition principle, as it will only result
in correct calculations for instantaneous measurements in this
circuit.

Averaging multiple photocurrents and exposures reduces
noise without compromising details. This is because it
increases the SNR of the incoming image. It may also increase
the bit depth of images, which means the memristive network
presented is able to increase the dynamic range of images
received by low-dynamic-range sensors. When all memristors
in Fig. 6 are set to “OFF,” then current flow is not impeded
and the signals undergo a first stage of averaging before
being passed through to the bipolar cell array. The hexagonal
structure depicted in Fig. 6 is tessellated across the network
to produce the photoreceptor-horizontal cell-OPL layer, and
each circuit represents one pixel. Therefore, the hexagonal
structure takes the input of six photoreceptor pixels. Any
leakage of current beyond the first-order branches throughout
the system is insufficient to switch the state of any memris-
tors other than those that are directly adjacent to the node
receiving photocurrent. This is due to the large amount of
current division that occurs across the many nodes of the
system.

The memristors in Fig. 6, with associated simulation results
given in Fig. 7, are based loosely on the ideal memristor
demonstrated in [37], and adapted so as to have ON- and OFF-
resistance values more appropriate for ionic channeling

q(t)=w(1)(0.2¢) (1) +400]¢ (1)+0.25| —400|¢p (1) —0.25]) (6)

which is an odd-symmetric piecewise linear function physi-
cally equated to an ideal switching memristor with Mqoxy = 5 Q
and Mo = 0.001 Q, and w(¢) is based on a form of the
Joglekar window function from [41] which we have adapted
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(b)

Fig. 8. Bipolar cell circuitry: the bipolar cell circuit generates “ON” and
“OFF” responses that vary in accordance with the intensity of light adapted
from [45]. The threshold between “ON” and “OFF” current is controlled by the
reference voltage VRgg, which is predetermined from biological data. If input
current from the horizontal cell output Hoyt (or otherwise, the bipolar cell
input BpN) is greater than the threshold, Ip,, flows: Ip, o IyqrITH,
where [Ty is threshold current and /p ;. is the current response from the
horizontal cell circuitry, namely, the output from the central node in Fig. 6.
Ipopp s represented by Ipgpp o 1/1pq,r When the condition Iy, < ITH
is created by VRgE. (a) Bipolar cell circuit schematic. (b) Bipolar cell circuit
layout.

to be applicable to modeling the influence of nonlinear drift
and boundary condition on an odd-symmetric ideal memristor

w(t) =1—2x%" (7

where p is a positive integer that varies the boundary ramp
and is set to p = 10. It is important to note that the
flux-dependent memristors are not restricted to devices with
specific mechanisms and typically use physical mechanisms by
using a measurable quantity as the state variable of the device
similar to the approach presented in [42] and [43]. Models
based on physical devices, such as that presented in [44], can
still be implemented into this architecture, provided that the
specific parameters are selected to ensure a sufficient ON—OFF
memristance ratio and a low enough memristance variation
while switched ON.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 12, DECEMBER 2018

Bipolar Cell Current Response

<

£ 600 — |5

"E ON

L 500 — IBor

f—

S

© 400

=}

[o

S 300

o

o 200

O

A

& 100

o

2

m

0.000 2.000 4.000 6.000 8.000
Horizontal Cell Output Current IHour [NA]
= Bipolar Cell Input Current I

Fig. 9. Bipolar cell simulation: a single bipolar cell circuit responds with

both ON- and OFF-center currents. While the input current from the horizontal
cell output Hoyr increases, the current output at Bon increases and Bopp
decreases. Biologically determined results of inverse proportionality between
Bon and Bopr confirm the validity of the simulations of the bipolar circuit
model.

C. Bipolar Cell Circuitry

The two types of bipolar cells, ON-center and OFF-center
bipolar cells, are merged into the same schematic, as shown
in Fig. 8(a), adapted from the 1-D version presented in [45],
with the simulation results of Fig. 8(b) displayed in Fig. 9.
The circuit generates two types of responses according to
light intensity, and the threshold between the ON and OFF
current is controlled by an external voltage Vrgr, which can
be predetermined using biological data.

For the ON-bipolar cell response /gy, Vbp = 1.8 V, Vg =
04V, Vgg = 1.4V, Vggr = 0.9 V, and the outputs Bogr
and Bon are both connected to 47-fF capacitors.

The response of both g, and Ip,. fits the experimental
data of bipolar cells [46] as graded potentials, confirming the
validity of the circuit.

D. Amacrine Cell Circuitry

The amacrine cell network operates in much the same way
as the horizontal cell network presented in Section IV-B,
characterized by the ideal memristor generically modeled
by (4), (6), and (7). Six bipolar cell signals converge and are
averaged with memristors (using the method in Fig. 6), as a
simplified functional model of the amacrine cell, and produce
the input for a single ganglion cell circuit. Each node of the
hexagonal circuit forms a single “pixel” in the ganglion cell
network. The main difference between the amacrine cell circuit
and the horizontal cell circuit is that there are two separate
layers of amacrine cells, one which sees input only from
various Borr nodes and one which sees inputs only from Bon.
Instead of Poyt photoreceptor outputs (as in Fig. 6), we see
Borr and Bon as the inputs, and central node cell outputs
of Aporr and Aon, respectively. Akin to our photoreceptor
layer, the memristors in this layer are intended to mimic some
of the properties of amacrine cells, thereby allowing a means
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Fig. 10. Ganglion cell circuitry: the ganglion cell circuit adapted from [45]
will receive its input from either ON- or OFF-center bipolar/amacrine cells
depending on whether it is either an ON-center or OFF-surround ganglion
cell [47]. An ON-center cell is activated when the center of its receptive field
is exposed to light, and is otherwise inhibited when the surrounding area is
exposed to light. OFF-surround ganglion cells have the opposite reaction. Our
model of the ganglion cell does not produce both ON-center and OFF-surround
signals from the one circuit, and is instead dependent on whether it receives
IpoN Of Ipgpp from the bipolar cell. In our simulations of the ganglion cell,
we only use IoN as the input to the circuit. The output current /G is
sent to through the optical nerve so an image can be interpreted by the visual
cortex of the human brain, or alternatively can be passed through an analog-
to-digital converter to assign a bit value to the signal so as to represent a
brightness value. (a) Ganglion cell circuit schematic. (b) Ganglion cell circuit
layout.

to detect changes in moving edges and the implementation of
a form of center—surround interaction that contributes to the
resulting response properties of the final ganglion cell pixel.

E. Ganglion Cell Circuitry

The circuit shown in Fig. 10 adapted from [45] generates
sustained responses and transient responses, Isys and IGqyy,
respectively, of the input current. The sustained output current
Isys is low-pass filtered by a current mirror with a capacitor,
and the transient output current /G, is high-pass filtered by
subtracting the low-pass-filtered input from the input current.
Therefore, this circuit can simulate four types of ganglion
cells: ON and OFF sustained and ON and OFF transient ganglion
cells.
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Fig. 11. Ganglion cell simulation: simulation of a single ganglion cell circuit

from Fig. 8. When V4 is changed (logically equivalent to the ganglion cell
input V), the voltage at Gout and VG qyp produces a spike train.

For the simulation of transient ganglion cell voltage
response VG q,r shown in Fig. 11, a graded potential is applied
at the input Vo, and Vpp = 1.8 V, Vrg = 0.4 V, and the
output of the ganglion cell is connected to a 47-fF capacitor.
Importantly, the response of the ganglion cell Vi, is a spike
train, also displayed in the simulation results shown in Fig. 11,
and thus matches biological data of the ganglion cell.

Each of the cell circuitries mentioned operates in a sequen-
tial flow, starting at the photoreceptor cell, with the final output
at the ganglion cell circuit. Simulations of this circuit are
provided in Section V in the context of the full pathway (from
photoreceptor injection to ganglion cell output) to confirm
biological accuracy.

V. RETINAL NETWORK MODEL

The undue complexity of neural processes, such as retinal
image processing and each associated cellular circuitries, has
been described in Sections I, II, and IV. For ease of under-
standing, a summary of the signal that flows through each cell
has been provided below, prior to discussing how the circuits
are combined to produce a cellular network.

1) The photoreceptor cell is a CMOS APS circuit, which
passes a signal from Poyr to the horizontal cell
circuit.

2) The horizontal cell is a hexagonal array of memristors,
where each hexagon accepts six separate signals from
Pour,_,¢ and averages them with memristors. This signal
is passed onto the bipolar cell circuit.

3) The bipolar cell is a CMOS circuit which generates two
outputs, representing the two types of bipolar cells that
exist in nature: the ON-center and OFF-center bipolar
cells. These correspond to Bon and Bopr, which pass
signals onto the amacrine cell circuit.

4) The amacrine cell, much like the horizontal cell, is a
hexagonal array of memristors. However, unlike the
horizontal cell input, there are two different types of
input sources: Bon and Bopp. Therefore, two separate
layers of hexagonally connected memristor amacrine cell
circuits diverge the two signals. Due to symmetry, and
for the sake of simplicity, we focus here only on the
ON-center bipolar cell input Bon. Each amacrine cell
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Fig. 12. Retinal network model: the signal flows through the retina initializing
as light impinging upon the photoreceptor cell through to the ganglion
cell output. Each light input can be represented by four different types of
ganglionic output cells.

accepts six different signals from Boy,_ and averages
them, from which a single output Aoy is generated and
passed to the ganglion cell input.
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5) The ON-center ganglion cell is a CMOS circuit, which
accepts an input from Aon (conversely, OFF-surround
ganglion cells accept Aorr), and is high-pass filtered to
generate the spike train output at Gouyr. This signal is
the final output of the overall system and is sent to the
visual cortex for interpretation.

The flow of photocurrent through a series of single cells is

shown in Fig. 12.

In a practical device, the signal that flows through a series
of single cells from photoreceptor — ganglion cell would
correspond to a single pixel. Therefore, this section serves to
extend out the photoreceptor cell circuit into a 128 x 128 array.
The photoreceptor outputs Pour, 4 interact and average with
their immediately adjacent cells in the horizontal cell memris-
tor array. The averaged signal provides the input to the bipolar
cell, which has been extended to a 64 x 64 network. Each
signal is averaged with another six adjacent bipolar cell signals
Bon,_ ¢ and thus provides the input to a 16 x 16 ganglion cell
array. As such, our network simulates 16384 photoreceptor
cells, 4096 bipolar cells, and 256 ganglion cells in a single
run. The relativity of these numbers is biologically significant,
as signals from the initializing region of the retina converge
together as they approach the brain—much like our hardware
system. The pixel array representation of the network is shown
in Fig. 13.

Each of the 256 ganglion cells will produce an output spike
train, and the frequency of these spike trains corresponds to the
light intensity of the image as perceived by the visual cortex.

VI. EXPERIMENTAL RESULTS
A. Retinal Network Simulation Results

The CMOS circuit in Fig. 12 was designed using the
SKHynix 180-nm process. As all circuits operate in the
subthreshold region, a high supply voltage was not necessary.
The CMOS photoreceptor and bipolar and ganglion cells were
designed with Vpp = 1.8 V, Vtg = 04 V, Vgg = 1.4V,
and VRgrp = 0.9 V, and all outputs Pour, Borr, BON,
and Goyr are connected to 47 f F capacitors. The minimum
feature size of a transistor is 1.58 um x 0.78 um. As shown
in the CMOS chip design in Fig. 14, the layout was arranged
with 128 x 128 photoreceptor circuits, 64 x 64 bipolar circuits,
and 16 x 16 ganglion circuits with a die size of 3 mm x 3 mm.
The generic memristor used in the photoreceptor cone cell
(see MR1 in Fig. 4) is simulated with a modified version of
the HP Ti O, memristor presented in [48] whereby the state
equation is characterized with (5). The ideal memristor used
in the horizontal and amacrine cell averaging system is based
on the model presented in [49], where the charge-flux relation-
ship is a piecewise linear function enabling perfect switching
between resistance states Moy = 5 Q and Mogr = 0.001 Q at
the threshold flux value of =®7 = 2.5. The device parameters
of the ideal memristor are loosely based on those from [49],
where average carrier mobility zy = 10719 cm?/(V-s), device
thickness D = 10 nm, and the device-dependent constant
is y = —49.9 x 10°. While the model presented in [44] is
a better representation of oxide-based RAM, the memristor
device in [49] was instead used in this paper to ensure an
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Cells

Pixel array representation of the full signal flow convergence from a 128 x 128 array of photoreceptor circuits to a 64 x 64 array of bipolar cells

and to a 16 x 16 array of ganglion cells. For clarity, the distance between the converging signals has been exaggerated: in the actual circuit, only signals from
adjacent pixels converge. Furthermore, the detail of the averaging circuitry has not been included in this diagram.

Fig. 14. Retinal network CMOS Chip: consisting of an array of 128 x 128
photoreceptor circuits, 64 x 64 bipolar cell circuits, and 16 x 16 ganglion cell
circuits, fabricated using the SKHynix 180-nm process. The memristor layers
are not shown in this layout structure, as they are die bonded to the CMOS
chip on a separate layer.

approximately fixed memristance when in either of two states,
without having to decrease the ON—OFF memristance ratio.
For the sake of completeness, in a circuit where the VTEAM
model from [44] is used with parameters based on the Pt—
Hf-Ti memristor from [50], with respect to Fig. 7, the curve
between “1” and “2” is more gradual. This results in an
averaged potential being displayed for a shorter duration of
time before the signal spikes. Therefore, the system becomes
more prone to errors if subject to noise, even though it is still
adaptive into the architecture for the sake of image processing.
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Fig. 15. Simulation result of a full retinal architecture network. The valid-

ity of each independent cellular circuit component has been confirmed
in Section IV, and when the cells are connected as shown in Fig. 12 and
extended outward into an array as in Fig. 14, each constituent component of
the retina exhibits the appropriate voltage or current response, which further
verifies the functionality of our architecture.

The input stimulus in the simulation was the emulation of
a uniform light turning ON at 1 s for a duration of 0.02 s
with a photocurrent injection of Ipp, = 600 pA at the pho-
todiode, which biologically corresponds to a light intensity
of 100 rhodopsin/s and 50000 photoisomerizations/cone/s.
This was applied to the central photoreceptor circuit only,
and all other photoreceptors were left without stimulation
(for the initial setup). The results in Fig. 15 display the
cone photocurrent response [py,;, the bipolar photocurrent
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Fig. 16. Frequency analysis of the silicon retina output. The frequency of the
various voltage responses Vi, shown in Fig. 16(a) is approximately linear
against photocurrent Ipy, as shown in Fig. 16(b), until the system reaches
saturation at approximately Ip, ~ 75 nA, beyond which is the glare region
of the retina, where increase in light intensity can no longer be registered.
The glare region can be shifted by using transistors of varying threshold
values; however, the process used here provides an optimal tradeoff between
retinal realism and power consumption. (a) Ganglion cell response to varying
photocurrent input. (b) Ganglion cell frequency.

responses Ipyy and Ip,ge, the amacrine membrane potential
Vaon» and most importantly, the ganglion membrane potential
VGour- These simulations match the shapes of experimentally
verified cell behaviors as derived from computational models
of the vertebrate retina [51]-[55].

Fig. 16(a) shows the ganglion membrane potential across
varying values of input photocurrent Ip. The signal ceases to
increase in frequency at input photocurrents of approximately
75 nA, which corresponds to the region where the retina
ceases to be capable of differentiating increasing levels of light
intensity (also known as the “glare region”).

Fig. 16(b) presents the ganglion cell response Vg, fre-
quency fGoyr as a function of photocurrent at the photore-
ceptor cell Ipy. Up until saturation, the relationship can be
approximated by a linear model, which becomes significant
in image reconstruction, which is the focus of the experimental
results in Section VI-B.

This paper models cone terminals, horizontal cells, ON- and
OFF-bipolar cells, amacrine cells, and ON- and OFF-ganglion
cells, and for a single pathway consisting of one of each
cell, it consumes a total of 7.8 W of power. This includes
dynamic, static, and leakage power during the activation
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TABLE I
POWER CONSUMPTION OF A SINGLE CELL OUTPUT

Microprocessor | Retinal Chip [56] | Real Retina | This Work
2.2 mW 17 uW 16.2 nW 7.8 uW
TABLE II

POWER AND AREA PROJECTION

Process [57] | Vpbp (V) | Vpp (V) | Active Power | Area
180 nm 1.8 0.4 1 1
45 nm 0.8 0.3 0.31 0.3
14 nm 0.5 0.25 0.09 0.24
10 nm 0.4 0.22 0.045 0.15

state of a single pathway. A comparison is made against
other closely modeled circuits, as shown in Table I, where
a typical microprocessor consumes 2.2 mW to simulate a
single pathway from photoreceptor to ganglion cell, and a
conventional retinal chip from [56] consumes 17 u'W. For the
full network pathway presented in this paper, a 128 x 128 array
of photoreceptors consumes 8 uW, a 16 x 16 array of bipolar
cells consumes 2 mW, and an 8 x 8 array of ganglion cells
consumes 1 W, and so the total power consumption for the
layout can be approximated to 2 mW. The power consumption
of the full retina containing 10% photoreceptors, 107 bipolar
cells, and 10° ganglion cells can be estimated based on the
measured data as 60 mW + 80 mW + 1 mW, which totals
141 mW.

In anticipation of power and area for advanced technologies
and newer processes implementing the silicon retina presented
in this paper, the data in Table II present a projection based
on the 10-nm process devised by Samsung.

B. Image Processing Results

The simulation results match well with experimentally ver-
ified signal outputs, but a more meaningful result can be
generated by interpreting the ganglion cell spike train as a
proper image. As seen from Fig. 16, the range of mean-
ingful frequencies the ganglion cell output produces is from
0 — 105 Hz. A Fourier transform is applied to the output of
the chip to extract frequency data, and processed in MATLAB
to linearly map the range of available frequencies from lowest
to highest as 0 to 256 bits. Bit 256 is interpreted as white light
(the highest possible frequency before saturation) and bit O as
an absence of light (no output signal), linearly shifting gray-
scale values in between.

Three examples are provided in Fig. 17. Each input image
consists of a 128 x 128 array of pixels, and each pixel is
either black or white, which corresponds to the 128 x 128
photoreceptor array. The maximum photocurrent value Ipp
before entering the glare region [as demonstrated in Fig. 16(b)]
is approximately 75 nA, and so this photocurrent value is used
to stimulate all white pixels. This photocurrent passes through
the full network RRAM-CMOS neuromorphic vision chip to
produce a spike train output from the 16 x 16 ganglion cell
array. The spike train frequency value exists in the domain
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Fig. 17. Experimental results of a silicon retina network in full network
array from 128 x 128 input image at the photoreceptor cell to the 16 x 16
array output at the ganglion cell. (a) Retinal network image processing of
“A.” (b) Retinal network image processing of “B.” (c) Retinal network image
processing of “C.”
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Fig. 18. Analytic approximation of the human line-spread function for an
eye with a 3 mm diameter of the pupil adapted from [30]. The distance along
the x-axis represents distance from the fovea across the back of the retina, and
the line-spread function reflects the response of photoreceptors to a “perfect
line” input as a function of light intensity.

[0, 105] [up to the maximum frequency value from Fig. 16(b)]
and is mapped in MATLAB according to a linear scale to
a bit value in the range [0, 256]. Each bit corresponds to
a gray-scale value of monochromatic light and is presented
as the ganglionic network response. In all cases, we see the
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Fig. 19. Experimental results of a silicon network array from 128 x 128
input image at the photoreceptor cells to the 16 x 16 array at the ganglion
cell output using a “fine line” input to determine the accuracy of our model
by comparison to the human line-spread function. The center of the array is
denoted as i = 0" and each subsequent pixel column is 1 min of visual angle
from the center.

practical advantage of our silicon retina chip of low-power
image smoothing and conversion of a low-dynamic-range 2-bit
black and white image into a 256-bit high-dynamic-range
scene.

In fact, it is possible to test the accuracy of smoothing in our
chip to that of the biological retina by comparing a single
white line input to the line-spread function. The line spread
of a system is the response to a 1-D line in a shift-invariant
system. Naturally, as the pupil size increases, the width of
the line-spread function also increases which indicates that
the focus is worse for larger pupil sizes, and the amount of
blurring increases. An analytic approximation of the human
line-spread function for an eye with a 3-mm-diameter pupil is
presented in [30], given in (8), graphed in Fig. 18, and is used
as the benchmark for comparison of image processing against
our chip

I; = 0.47e7337 4 0.53¢093li] 8)

where /; is the line-spread function, and the variable i refers
to the position on the retina from the focal point specified
in visual angle in minutes of arc, as experimentally validated
by Westheimer. Applying this to a pixel array, the center of the
array is denoted i = 0 and each subsequent pixel column is
denoted as 1 min of visual angle from the center, demonstrated
in Fig. 19 to capture a total of 16” arcminutes of visual angle
in our experimental results.

Fig. 19 also shows the line-spread response of our silicon
retina. Column =+i = 3 generates a brightness of 24% white
(i.e., 24% of the maximum frequency response). Substitution
of i = +£3 into (8) yields 22.64%, which provides a very
reasonable model of spatial smoothing within an error margin
of 6%. This arises due to the lack of a perfect memristor
behaving like a closed switch in the OFF state and, instead,
dissipates power which ultimately has an effect on the fre-
quency of the output.

VII. CONCLUSION

This paper proposes a low-power silicon RRAM-CMOS-
based retinal network, which can generate four types of
ganglion cell output signals, and was designed and verified
with simulations and experimental results, mapped against
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both biological data, and other neuromorphic vision processes.
Memristors are used to provide functional averaging circuits
to emulate spatial smoothing, and a low-dynamic-range inte-
gration APS to perceive a high-dynamic-range scene. Our
efforts in replicating the significant complexity of retinal signal
processing in a novel architecture involving cellular layers with
interconnections across individual signal pathways are shown
to be horizontally scalable and provide a basis for expansion
to be implanted as part of a retinal prosthesis in the future, and
ultimately pave the way for a new frontier in visual sensory
systems.
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