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Abstract—The deployment of IoT has brought on the gen-
eration of massive amounts of data in need of analysis. In
recent times, resistive switching-based crossbar arrays have been
presented as a viable candidate for the acceleration of neural
network inference, in pushing beyond the limit of CMOS process
scaling so as to keep pace with the ever-growing complexity of
computation. While plenty of empirical and physically descriptive
models exist, their simulation run times become inconvenient for
users when used in large scale crossbar arrays. In this paper,
we first present a behavioral model of digital resistive switching
devices, demonstrated on experimental PCM data to exhibit
generality which can see useful implementation in circuit analysis
methods for compute-in-memory applications. This model is
based on a pair of nonlinear ordinary differential equations
that request switching time and threshold voltage inputs from
the user, which are the most important concerns for binarized
weights in crossbar arrays. By stripping the model of detailed
physical characteristics that is not required at the systems level,
we demonstrate an improvement of computational run time of
up to 20-fold over state-of-the-art physics-based models, and 1.3
times over the most commonly used empirically driven models.

Index Terms—behavioral model, crossbar, neural network,
memristor, RRAM

I. INTRODUCTION

In response to the proliferating amount of data in our IoT-
driven world, the types of algorithms being developed for
inferential processing and training of deep neural networks
(DNNs) are increasing, as are the types of hardware capable
of processing these algorithms. In fact, many advanced AI
solutions tend to use a hybrid of technologies. While CPUs,
GPUs and FPGAs (often remotely accessible via cloud-based
options) are well established of their DNN machine learning
capabilities, we have witnessed the introduction of multiple
application specific integrated circuits (ASICs) that have the
capacity to outperform conventional hardware in terms of
speed, size and power consumption.

In addition, an experimental candidate which has shown
good promise for inference acceleration are Resistive RAM

J. K Eshraghian is with the Department of Electrical Engineering and
Computer Science, University of Michigan Ann Arbor, MI 48109, USA.
(Corresponding author: Jason K. Eshraghian, e-mail: jaosnesh@umich.edu)

Q. Lin, Q. Hu and H. Tong are with the School of Optical and Elector-
nic Information, Wuhan National Laboratory for Optoelectronics, Huazhong
University of Science and Technology, Wuhan 430074, China

X. Wang is with the School of Electronics and Information, Hangzhou
Dianzi University, Hangzhou 310018, China

H.H.C. Iu is with the School of Electrical, Electronic and Computer
Engineering, The University of Western Australia, Perth, WA 6009, Australia

J. K. Eshraghian’s contribution was supported by the Endeavour Research
Leadership Award from the Australian Government.

Manuscript received February 2, 2020.

(RRAM) crossbar arrays, thanks to its fast switching speed
(<10 ns), low switching threshold (<3 V) and ease of
integrability with CMOS [1]–[8]. As memristor crossbars
are increasingly integrated with CMOS cells and peripheral
circuitry, it is essential for RRAM models to keep pace with
the needs of circuit designers to simulate very large scale
arrays with a high level of computational efficiency. Circuit
simulation speed and accuracy is critical for timely design,
and this can be implemented by avoiding expensive math
functions. Where internal nodes are used, the circuit simulator
should solve for the quantities on the node itself.

Many models that are being developed seek to accurately
capture the physical phenomena that gives rise to the con-
duction mechanisms of low and high resistance states. This
is often performed by identifying the physical variables that
define the resistance state in question. In valence change
mechanisms of RRAM, this includes nucleation, ion hopping,
electron-transfer reactions and temperature and electric field
acceleration. The contributions of these various mechanisms
determine set and reset switching times, and switching thresh-
olds [9]. Such physics-driven models are essential for deter-
mining process corners through parametric variations, such as
Monte Carlo simulations.

As memristor crossbar arrays increase in scale [10]–[12],
there is a need for simplified models that capture the essential
features of resistive switching relevant to systems level de-
signers that are operating at a higher layer of abstraction [13].
Compact models are a computationally efficient description of
the terminal properties of a device as a function of the terminal
voltages. The main challenge of developing compact models
is the requirement of balancing the need for physical scaling
and accuracy with computational speed. At present, unified
methodologies of memristor modeling in electronic design
automation (EDA) and layout tools are sparse. At the highest
level of abstraction, RRAM devices are treated as simplistic
switches in hardware description languages (HDLs). The next
layer of complexity often treats them as simple resistors
for read-out, and beyond that, memristors are represented
with more complex macromodels [14]–[16], or physics based
analytical models [9], [17]–[20].

Behavioral models in HDLs only consider characteristics
essential for systems level implementation. At this stage,
industrial use of RRAM tends to be limited to digital-domain,
single-bit switching due to ensure reliability [?]. In this paper,
we present a generalized RRAM model that strips the device of
physically-based descriptors that give rise to analog behaviors,



Fig. 1. Behavioral digital RRAM model (a) Phase plane of the model with
voltage variation dynamic route map (note the asymmetry along the x-axis
caused by large disparity of switching time between set and reset processes
in phase-change memory) (b) conductance variation with state.

and prioritize computational efficiency by including informa-
tion that is relevant only at the behavioral level. This is wholly
limited to switching thresholds, voltage-dependent switching
times, on and off conductances, and transition times. As we
will demonstrate, it can be used to characterize both bipolar
and unipolar switching characteristics. The simplistic form of
the model enables real-time simulation on a modern system
of large-scale crossbar arrays, whilst capturing the behavioral
parameters most relevant to a systems level designer.

II. GENERALIZED RRAM MODEL

In deriving the dynamical system model of RRAM, a
number of conditions are imposed by virtue of the set and
reset processes and their associated switching characteristics.
The variable description and parameterization of each con-
stituent property is summarized in Table I, with accompany-
ing examples of parameters found in phase change memory
devices (PCM). We use PCM as the guiding example to show
generality to any sort of resistive switch intended for operation
in either of two modes. A general form of our conductance-
based dynamical system model is characterized by (1) and (2)
below:

dx

dt
=

{
ax(x+ b)± vM , if x < 0

−cx(x− d)± vM , if x ≥ 0
(1)

i(x) = vM
( gs
1 + esx

+ gr
)
. (2)

Equation (1) is known as the ‘dynamical system’ or ‘phase
plane’ model which describes the rate of change of the internal
state variable, x, and (2) follows a state-dependent Ohm’s Law
to express current. The two above equations are illustrated in
Fig. 1, and (2) is in terms of the bracketed conductance term.

The design behind the form of (1) is the need for bistability
to ensure the device is always operating in one of two states
outside the programming phase. The model can take a number
of forms, with a single cubic function being the most obvious
alternative, though it becomes simple to analytically solve
when it is approximated by a piecewise square function as
we have used. The variable vM is the voltage across the
terminals of the device, where during read it is a small

signal voltage applied at the word line, and during write
processes it is the difference of the voltages applied at the
word and bit lines. When the device is set, vM is added to
(1), and when the device is reset it is subtracted from (1).
For unipolar devices, such as PCM, the absolute value of vM
must be taken instead. The constants a, b, c and d are device-
dependent values calculable using pre-determined switching
characteristics, where the following two conditions must be
satisfied for set:

ts =
2tan−1

[
2ab√

4a|vT |−b2
]

√
4a|vT | − b2

, (3)

vT =
b2(1− 2a)

4a
, (4)

where switching time in (3) is derived by multiplying both
sides of (1) by dt, dividing both sides by the quadratic term,
and evaluating the definite integral from x = −b to x = 0,
and has the condition of 4avT > b2 imposed upon it. Voltage
threshold in (4) is derived by solving for x at the zero-crossing
of the time derivative of (1), and substituting this back into (1).
These two equations can be solved simultaneously, making use
of known experimental values for switching time and threshold
to find the constants a and b. This identical procedure can be
repeated for reset to find c and d.
The bracketed conductance term in (2) is much simpler to
derive than (1). The logistic function is used where gs is the
upper limit of conductance in the set (or crystalline for PCM)
state, gr is the lower limit in the reset (or amorphous) state
and s is the switching-slope characteristic, the greater it is
the steeper the switching slope. This form is chosen as it is
a straightforward way to enable state-induced x current (or
conductance) switching.

Graphically, with respect to Fig. 1, vM has the effect of
shifting dx

dt upwards in set and downwards in reset. During
set, if vM exceeds vT for a sufficiently long pulse width,
then the position on the phase-plane is on the positive half
of dx

dt . This causes x to shift to the right. Once x crosses the
y-axis, the write voltage can be turned off as the state will
tend to the right-hand point of stability, and the device has
successfully been set. The same principle applies in reverse
for reset, with the curve shifting downwards and thus requiring
a higher voltage (which corresponds to the need for a higher
programming current).

Specifically, a memristive system is mathematically defined
as a pair of dynamical state equations I = g(x, V )V and
dx
dt = f(x, V ). These are in the same form as that presented
in (1) and (2). The functional flow of the model is depicted in
Fig. 2, where rather than fitting V-I characteristic curves to the
model, they instead use empirical set, reset and conductance
level data the device is intended to be used in.

With the operation of the RRAM model now elucidated, the
next section will functionally use it in a series of simulations to
demonstrate how it can optimize computational performance.



Fig. 2. Using behavioral parameters to solve for the dynamical system model of RRAM. Values for tS , VS , tR and VR are used to solve for a, b, c, and d
in (3)–(4), which are substituted into (1)–(2) along with gS , gR and s.

III. SIMULATION RESULTS

A. Phase Change Memory Model

We first validate a single unipolar PCM device model as
against experimental data [21], and on in-house fabricated
Ge2Sb2Te5 materials in a conventional mushroom structure,
using WTi as the bottom electrode. This device has been
chosen as it is most widely commercially used. The I-V curve
in Fig. 3 shows a readout performed at low bias (i.e., in the
read region). In order to reach the set and reset programming
regions, the bias is raised above the switching threshold vT ,
which is the mechanism leading to phase-change. As shown
in the I-V curve, by using the parameters in Table I our
model is capable of successfully exhibiting realistic set and
reset switching times and thresholds, and can thus be used
in numerical and analytical circuit simulations with good
reliability for the relevant regions of operation in single-
bit mode. This model is not intended to retain accuracy in
intermediary regions, and presumes volatility in such regions.
Thus, for the purposes of large-scale inferential acceleration
in crossbars we prefer to reduce computational complexity
by entirely removing specificity in the modes of operation
that are not meant to be used. We have additionally included
model simulation data of phase-plane dependence on voltage
in Fig. 4, as this information is not captured by the voltage
sweep in Fig. 3(b).

Fig. 5 shows simulation results of a 3×3 crossbar array
performed in Simulink and displays the current readout of a
selected and unselected pair of PCM devices during both read
and write processes as a function of time. During write, the
unselected cell sees half the voltage as seen by the selected
device due to the V/2 write scheme using values of 0.8V
for 100ns to set and 1.25V for 10ns to reset. Therefore, the
state of the unselected cell always reaches switching failure
due to insufficient voltage (i.e., the dynamic route map from
Fig. 1 does not translate vertically enough in order for x
to cross the y-axis). The state shifts back to the original
stable position in accordance to (1), while the selected cell

Fig. 3. PCM I-V curve (a) Experimental data adapted from [21] in the
crystalline and amorphous states (b) presented PCM model simulated in
MATLAB using parameters from Table I.

Fig. 4. Voltage-dependence of PCM phase plane during reset process.

fully switches. We note these simulations are performed under
idealized conditions where no line losses occur in a small 3×3
crossbar. For our simple proof-of-concept simulations, this will
not deviate from experimental work, though line resistance
may need to be considered in larger arrays.



Fig. 5. Model simulation, reading and writing to a pair of PCM devices.
Relevant parameters are given in Table I (a) Set operation (b) Reset operation.

Fig. 6. W/WOx/Pd RRAM device on a 2 µm×2 µm crossbar structure shown
in the SEM images.

B. Valence Change Mechanism Model

The RRAM device we verify our model on is shown in
Fig. 6. The fabrication process is as follows: 1. the bottom
electrode is patterned by lithography; 2. tungsten is sputtered,
3. the surface of the tungsten is oxidized to get WOx, 4.
perform lift-off, 5. pattern the top electrode by lithography,
6. evaporate Pd, and 7. perform lift-off. Table II summarizes
the parameters that we use to successfully emulate digital
switching in the device using the same process as described
for PCM devices, this time without taking the absolute value
of voltage in (1). The device is characterized in Table II across
several modes of digital operation between set and reset where
current is read out using a 0.2 V voltage pulse to measure the
conductance, and these values are adopted into Eqs. (1) and (2)
in order to derive their respective models using the provided
measured characteristics. We note that transition rate s has
not been provided as this is not a physically characterized
phenomena, and is instead used as a way to control the
abruptness of the conductance shift.

IV. DISCUSSION

The RRAM model in (1) and (2) presents a small sys-
tem of two dynamical state equations which are analytically
simple to solve, and numerically computationally inexpensive
to perform. In comparison to the most recent state-of-the-art
physically based models [9], our model’s average execution
time for a current-based set process is only 5.8% of other
RRAM models that are intended for analog-domain modeling.
This was calculated by averaging execution time across 20
trials in MATLAB using the implicit trapezoidal Euler method

TABLE I
MODEL PARAMETERIZATION [22]

Symbol Parameter Value
Rs static resistance of set; Rs = 1

gs
7KΩ

is programming current of set 600µA
ts programming time of set 100ns
Rr static resistance of reset; Rr = 1

gr
200KΩ

ir programming current of reset 1700µA
tr programming time of reset 10ns
vT threshold voltage 0.78V
s transition rate 100

TABLE II
DEVICE PARAMETERS

Vs (V) ts (ms) Gs (µS) Vr (V) tr (ms) Gr (µS)
VCM: WOx 1.5 1.00 31.5 -1 1.00 12.35

2 0.10 32.55 -1.5 0.10 9.75
2.5 5.00 113.1 -1.5 5.00 7.75

T-Type GST 1.6 1.00E-3 45.4 2 1.00E-6 0.897
1.6 1.00E-3 38.0 2.2 1.00E-6 0.636
1.6 1.00E-3 3.02 2.8 1.00E-6 0.434

for both cases. This substantial improvement in run time is to
be expected, as our model has been optimized and simplified
for speed, and not for physical accuracy across the analog
spectrum of states. Therefore, our model would not be used
as a substitute for physical models unless operating digitally,
without the need for accurate predictions beyond gS and gR.

Therefore, a more fair comparison is the VTEAM model,
which depends less on physical characteristics in favor of
generalizability [23]. In this case, the system of equations
are of a relatively similar form and achieved an execution
speed improvement of approximately 30%. However, the
VTEAM model is substantially more accurate for analog
domain characteristics as it is developed based on curve-
fitting using gradient descent for optimization across a wide
spectrum of values, whereas our behavioral model is derived
analytically by using 7 parameters for switching (see (3) and
(4) and Fig. 2), and is therefore restricted in accuracy to
the information fed into the system of equations. As this
model prioritizes simplicity and speed, it is not a substitute
for other models that accurately capture empirical, analog
and physical characteristics of RRAM, but it may be more
desirable to use in large crossbar arrays where programming
and read voltages are consistent, and each device is restricted
to single-bit use. In addition, switching characteristic data
tends to be more readily available than detailed V-I data at
various driving frequencies which makes the co-efficients of
(1) intuitive and straightforward to derive, without the need
for any optimization procedures.

It is important to stress that, as a result of computational
simplicity, this is a relatively unphysical model in comparison
with prior state-of-the-art models. Physically based models are
employed to generate accurate simulations when parameters
are varied due to process variations. In the case of this model,
however, any process variations that give rise to switching
parameters must be implemented directly into switching time
and thresholding parameters. Whilst Monte Carlo simulations



are possible, they will not be based on physical process and
temperature variations, rather the distribution of switching
times and threshold variation should be derived instead. If
device variability is required, it would be preferable to use
compact models that are accurate beyond single-bit operation
unless large-scale simulations are being executed on limited
computational resources. One final consideration of our model,
in the form presented in (1), dx

dt never perfectly reaches the
x-axis and will only approach the limit indefinitely. Although
convergence is guaranteed, there will be a large dependence
on absolute or relative tolerances in SPICE simulations that
determine how long it takes for a solution to be calculated.

V. CONCLUSION

In this paper, we present a generalized model of resistive
memory that captures only the behavioral characteristics of
switching time, threshold, and transition time in the regions of
operation intended for use in digital switching. We verified its
operation on both PCM and VCM classes of RRAM. This sim-
plification has shown an improvement in computational speed
by approximately 20-fold over physically-driven models, and
30% over empirically-driven generalized models.

Models are only appropriate within their limit of intended
use. As a note of caution, this model is inappropriate for im-
plementing physical quantities. It is intended to capture digital
switching characteristics that would aid behavioral EDA tools
that are only concerned with gate-level parameters of bipolar
and unipolar switching. It avoids expensive math functions that
are typically required in descriptive models intended for analog
applications, and achieves large computational benefits by
assuming the RRAM devices are used as single-bit switches,
as well as a very high degree of simplicity by automating
the calculation of parameterization by taking only the known,
measurable parameters of programming amplitude and time.
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